
Clarity Contract 
Breakdown

StrataLabs

Prepared For: Velar

Latest Shared Commit: Jul. 7th, 23’

Latest Review: Jul. 18th, 23’

Review II core.clar & staking-core.clar

Below is a summary & list of all priority (0-3) issues found throughout an independent or 
paired review session. P0 & P1 issues *must* be fixed prior to launching, p2 issues are 
highly recommend & p3 issues are optional (usually syntax/preference based)



This section is not periodically updated but another review will be attached below. The 
top right items detail the date & GitHub commit reviewed.

This was our second paired review & light audit for the Velar team for specifically their 
upcoming core.clar & staking-core.clar contracts (we did not audit additional 
contracts in their protocol). As discussed by the team & seen throughout the contracts, 
Velar is modeled off of Uniswap v2.



Our contract kicked off on June 22nd with our first preliminary review presented on 
July 6th; this pass consisted of 104 unit tests written across both contracts. From that 
initial finding there were no p0 nor p1 as well.



Below are both summaries followed by respective user stories / unit tests. 



The .core contract has three (3) main public functions callable by any user: mint which 
is used to add liquidity to a pool, burn which is used to remove liquidity from a pool & 
swap, which swaps one token for the other token on the pool making sure that k stays 
tolerably equal or bigger than a * b to ensure constant product per Uniswap design.



There are additional public functions only callable by the contract owner, which make 
this contract secure from manipulation. These functions are, set-owner, set-rev-share, 
set-fee-to & create (used to create a pool pair). 



The only other public function in the contract, collect, is only callable by the fee-to 
address which send all the revenue to the fee-to address. 

Issue Effect Priority Category Status

Overuse of unwrap-
panic & try

Possible ambiguous 
error-handling p3 Inconvenie

nce Accepted

Single admin Possibility of lost private 
keys for admin functions p3 Convention Accepted

Serial ‘And’ conditions 
in asserts

Possible ambiguous 
error-handling p3 Inconvenie

nce Accepted

User Stories - Core.clar
Below is a list of user stories, the corresponding functions & the active state of 
that story as of the lastest audit.

(update-reserves)Update pool balances post-
trade

(swap)Transfers the token-out 
from the protocol to user

Update revenue balances 
post-trade (update-revenue) Only fee address can call 

Collect (check-fee-to)

(mint)We can Mint (err-collect-
preconditions)

Unsupported assets 
cause collect to fail

Unsupported asset 
causes mint to fail

(err-mint-
preconditions)

Transfers amt0 & amt1 
from the protocol to fee-
to address

(withdraw-liquidity)

We can Swap (swap) Can not burn 0 tokens (err-burn-
preconditions)

(err-swap-
postconditions)

Swap must meet minimum 
token in return

(burn)Burn transfers tokens 
from protocol to the user

Insufficient balance error 
for failed trades (err u1) Burns lp-token from the 

user (burn)

(err-swap-
preconditions)

Unsupported asset causes 
trade failure (update-reserves)Update pool balances after 

burn

Transfers the fees from the 
protocol to the rev-share (swap) Transfers the token-in 

from the user to protocol (swap)

(err-mint-
preconditions)Can not add 0 liquidity

Can not swap 0 (err-swap-
preconditions)

(Burn)We can Burn

Unsupported asset causes 
burn to fail

(err-burn-
preconditions)

(mint)Transfer liquidity to the 
protocol

(reset-revenue)Resets revenue to 0 

Transfers lp-token to the 
liquidity provider (mint) Only owner can change 

owner

Only owner can change 
fee-to address

Only owner can change 
rev-share address

Fees can only be updated 
by owner

Only owner can create a 
pool

Can not use a lp-token in 2 
pools

Can not set fee-share lower 
than 995/1000

(check-owner)

(check-owner)

(check-owner)

(check-owner)

(check-owner)

(err-create-
preconditions)

(check-fee)

(update-reserves)Update pool balances post-
mint

Calculates liquidity from 
reserves (calc-mint)

(err-mint-
preconditions)Can not add 0 liquidity

Can not swap 0 (err-swap-
preconditions)

(Burn)We can Burn

Unsupported asset causes 
burn to fail

(err-burn-
preconditions)

(mint)Transfer liquidity to the 
protocol

(reset-revenue)Resets revenue to 0 

Transfers lp-token to the 
liquidity provider (mint) Only owner can change 

owner

Only owner can change 
fee-to address

Only owner can change 
rev-share address

Fees can only be updated 
by owner

Only owner can create a 
pool

Can not use a lp-token in 2 
pools

(check-owner)

(check-owner)

(check-owner)

(check-owner)

(check-owner)

(err-create-
preconditions)

(check-fee)

(update-reserves)Update pool balances post-
mint

Calculates liquidity from 
reserves (calc-mint)

The staking-core contract has two (2) public functions callable by any user, stake & 
unstake. It is a relatively straight-forward & standard staking contract that uses maps to 
track total staked & staked by user. The only token that can be staked is Velar. The user 
can unstake & stake whenever he/she wants, & everything is tracked in time by epochs 
which have a duration of 200 blocks.

Can not change fee-to if 
you are not current owner

Can not create a pool if you 
are not owner

Can not change rev-share if 
you are not current owner

Swap will fail if fee is bigger 
than guard

Num can not be bigger than 
den on fees

(get-pool-id)

(check-owner)

(check-owner)

(err-create-
preconditions)

(check-owner)

(check-fee)

(err-create-
preconditions)

We can get the id of a pool

We can get the revenue 
from a pool (do-get-revenue)

(err-create-
preconditions)

(check-owner)

Owner can not create a 2nd 
pool with same tokens

Can not change owner if 
you are not current owner

We can get contract 
owner (get-owner) Owner can not use the 

same lp-token in 2 pools

Token-0 and token-1 
can not be the same

(err-create-
preconditions)

(get-fee-to)We can get fee-to address
(err-create-
preconditions)

Owner can not create a 
pool with wrong fees

We can get rev-share 
address (get-rev-share) Can not burn if not 

enough tokens to burn (burn)

(get-nr-pools)We can get the number of 
pools

We can get pool 
information (get-pool)

User Stories - Staking-Core.clar
Below is a list of user stories, the corresponding functions & the active state of 
that story as of the lastest audit.

(if (is-eq epoch...Updates the current epoch 
or new epoch stakes total

We can Unstake (unstake)

(err-unstake-
preconditions)

We can not unstake 0

Can only unstake if u-end1 is 
0 or higher than MIN-STAKE

(err-unstake-
preconditions)

We can Stake (stake) (get-user-staked)

(unstake)

(stake)(err-stake-
preconditions)We can not stake 0

We can not stake less the 
500 the first time

(err-stake-
preconditions)

(stake)Transfers Velar from user to 
protocol

Updates the current epoch 
or new epoch stakes user (if (is-eq epoch...

We can get the current 
epoch number

We can get the block start 
of an epoch

We can get the block end 
of an epoch

We can get total staked in 
last interacted epoch

We can get user staked in 
last interacted epoch

We can not stake if not 
enough balance

We can not unstake if not 
enough staked

(if (is-eq epoch...Updates the current epoch 
or new epoch stakes user

Updates the current epoch 
or new epoch stakes total (if (is-eq epoch...

(get-share-at) (unstake)

(current-epoch) (calc-epoch-start)

(calc-epoch-end) (get-total-staked)

We can get share-at 
specific epoch

Transfers Velar from 
protocol to user


